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Abstract

We present a new, simple, and elegant algorithm for computing the
optimal mapping for the Monge-Kantorovich problem with quadratic
cost. The method arises from a reformulation of the dual problem into
an unconstrained minimization of a convex, continuous functional, for
which the derivative can be explicitly found. The Monge-Kantorovich
problem has applications in many fields; examples from image warping
and medical imaging are shown.

1 The Monge-Kantorovich problem

The original problem, posed by G. Monge [11] in 1781, was to determine
the optimal way to move a pile of dirt to a hole of the same volume. Here
“optimal” means the total distance that the dirt is moved, one infinitesimal
unit of volume at a time, should be minimal.
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A modern and suitably generalized version is the following: let µ1 and
µ2 be compactly supported, absolutely continuous measures on Rn, with
supports K1 and K2 and densities f1 and f2. Assume that the measures have
the same total mass. Call a measurable function s : K1 → K2 feasible if
s is injective off a set of measure zero, and pushes µ1 forward to µ2 in the
sense that µ1 ◦ s−1 = µ2. We wish to find the feasible s that minimizes the
total-cost functional

I(s) =

∫
K1

c(x, s(x)) dµ1(x), (1)

where c ∈ C(K1 × K2) is a nonnegative function, thought of as measuring
the cost of moving a unit of mass from a point in K1 to a point in K2.

In addition to being mathematically interesting, this problem has applica-
tions in many fields, a few of which are economics, meteorology, astrophysics,
and image processing (see [12], [3], and [1] for discussion and references).

The purpose of this paper is to present a simple algorithm for the numer-
ical computation of the optimal mapping s. Other methods in the literature
include linear programming [3], computational fluid mechanics [1], and mini-
mizing flows [6]. Linear programming is simple but inefficient; the other two
methods are much more complex in their justification and implementation.
Once the mapping s has been computed, one can obtain from (1) a measure
of the distance between the measures µ1 and µ2, known as the Wasserstein
distance. However, the mapping s contains much more information about
the relationship between the two measures, and any geometric properties of
s will likely be of great relevance to the particular application. See Section 4
for a simple example.

The above formulation of the problem assumes that all the dirt at a
point x ∈ K1 must be moved to the same point s(x) ∈ K2. This restriction
was relaxed by Kantorovich [7], replacing the mapping s with a measure π ∈
M(K1×K2) that specifies the joint distribution of dirt-hole correspondences.
The measure π is called feasible if it has µ1 and µ2 as marginal distributions;
that is, if

π(· ×K2) = µ1 and π(K1 × ·) = µ2. (2)

The relaxed problem is to find the feasible π that minimizes

J(π) =

∫
K1×K2

c dπ. (3)
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Gangbo and McCann [5] show that if c is strictly convex, the relaxed
problem and the original problem have the same, unique solution: one has
min I(s) = min J(π), both functionals have unique minimizers, and the mini-
mizers are related by π(E) = µ1{x ∈ K1 : (x, s(x)) ∈ E} for all E ⊂ K1×K2.

2 Duality

Kantorovich also formulated a dual problem [8]: maximize

K(u, v) =

∫
K1

u dµ1 +

∫
K2

v dµ2 (4)

among u ∈ C(K1), v ∈ C(K2) satisfying

u(x) + v(y) ≤ c(x, y) for all x ∈ K1, y ∈ K2. (5)

(Note that since M(K1 × K2) = C(K1 × K2)
∗, this should really be called

a pre-dual problem.) It is a dual problem in the sense that supK(u, v) =
min J(π).

For the rest of this paper, we specialize to the case of the quadratic cost
c(x, y) = 1

2
|x−y|2, a strictly convex function. Ideas from convex analysis can

be brought into play by substituting u(x) = 1
2
|x|2−ϕ(x), v(y) = 1

2
|y|2−ψ(y)

into (4). The resulting problem is to minimize

L(ϕ, ψ) =

∫
K1

ϕdµ1 +

∫
K2

ψ dµ2 (6)

among ϕ ∈ C(K1), ψ ∈ C(K2) satisfying

ϕ(x) + ψ(y) ≥ x · y for all x ∈ K1, y ∈ K2. (7)

The value of this substitution is the following result, due to Knott and Smith
[9] and Brenier [2].

Proposition 2.1. The functional L has a unique minimizing pair (ϕ, ψ) of
functions, which are convex conjugates:

ψ(y) = ϕ∗(y) := max
x∈K1

(x · y − ϕ(x)) (8)

and
ϕ(x) = ψ∗(x) := max

y∈K2

(y · x− ψ(y)). (9)

Furthermore, s = ∇ϕ solves the Monge-Kantorovich problem (1).
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The mapping ϕ 7→ ϕ∗ defined by (8) is a variant of the Legendre-Fenchel
transform, the difference being that the Legendre-Fenchel transform takes
extended real-valued functions on a Banach space X to functions on the dual
space X∗. The proposition can be phrased in terms of the true Legendre-
Fenchel transform for Rn by defining ϕ ≡ ∞ outside K1 and similarly for ψ,
after which one obtains ψ|K2 = ϕ∗|K2 and ϕ|K1 = ψ∗|K1 . By this means, one
can deduce the following from the corresponding result (see [13, Proposition
11.3]) for the Legendre-Fenchel transform on Rn.

Lemma 2.2. Let ϕ, ψ be convex conjugates in the sense of (8) and (9).
Then

∂ϕ(x) = argmax
y∈K2

(
y · x− ψ(y)

)
(10)

for all x ∈ K1, and for all y ∈ K2

∂ψ(y) = argmax
x∈K1

(
x · y − ϕ(x)

)
. (11)

In particular, where ϕ (resp. ψ) is differentiable, there is a unique maximizer
for the right side of (10) (resp. (11)).

Remark 2.3. It is easily seen from the definition (8) that for any function
ϕ on K1, ϕ

∗ (and hence ϕ∗∗) is convex and Lipschitz. Hence for ϕ = ϕ∗∗

to be true requires that ϕ be convex and Lipschitz. Unlike the case of the
Legendre-Fenchel transform on Rn, however, this is not sufficient, as ϕ∗∗

depends on the choice of K2. It is true, however, that ϕ∗ = ϕ∗∗∗ for any
function ϕ, so that ϕ∗ and ϕ∗∗ will be convex conjugates.

3 A gradient descent iteration

We can now state the main result of the paper.

Theorem 3.1. Let f1 ∈ L1(K1), f2 ∈ L1(K2). Define M on C(K1) by

M(ϕ) =

∫
K1

ϕf1 +

∫
K2

ϕ∗f2. (12)

The functional M is convex, Lipschitz, and Hadamard differentiable. In par-
ticular,

M ′(ϕ) = f1 −
(
f2 ◦ ∇ϕ∗∗

)
det

(
D2ϕ∗∗

)
, (13)
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where the matrix-valued function D2ϕ∗∗ is defined in the Aleksandrov sense.
Furthermore, M has a unique, convex minimizer ϕ, for which s = ∇ϕ is the
solution to the Monge-Kantorovich problem (1).

Remark 3.2. If ϕ is such that ϕ = ψ∗ for some ψ, then

M ′(ϕ) = f1 −
(
f2 ◦ ∇ϕ

)
det

(
D2ϕ

)
. (14)

Remark 3.3. The theorem suggests that a potential for the optimal Monge-
Kantorovich mapping can be computed by a gradient descent iteration of the
form

ϕn+1 = ϕn − αnM
′(ϕn), (15)

where αn is a stepsize parameter. However, in general M ′(ϕn) may fail to be
continuous. In practice, with discontinuous f1 and f2 we find the iteration
(15) to produce a reasonable approximation of the optimal mapping before
numerical instabilities occur. A method to improve the performance of the
algorithm is described in Section 4.

Proof. That M has a unique, convex minimizer which is a potential for
the solution of the Monge-Kantorovich problem follows immediately from
Proposition 2.1.

To show the convexity of M , since the first term of (12) depends linearly
on ϕ, it suffices to show the pointwise convexity of ϕ 7→ ϕ∗(y) :(
tϕ1 + (1− t)ϕ2

)∗
(y) = max

x∈K1

(
x · y − tϕ1(x)− (1− t)ϕ2(x)

)
≤ max

x∈K1

t
(
x · y − ϕ1(x)

)
+ max

x∈K1

(1− t)
(
x · y − ϕ2(x)

)
= tϕ∗1(y) + (1− t)ϕ∗2(y).

(16)

The Lipschitz continuity ofM is an immediate consequence of the contrac-
tive property of the Legendre-Fenchel transform, namely that ‖ϕ∗1−ϕ∗2‖∞ ≤
‖ϕ1−ϕ2‖∞. This property is well-known and the proof, a simple consequence
of the definitions, is omitted.

The heart of the theorem, and the key to its usefulness, is the differen-
tiability of M . We begin by computing the one-sided directional derivative
of M at ϕ ∈ C(K1) in the direction of v ∈ C(K1). (A similar computation
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can be found in a paper [4] by W. Gangbo, but in a different context.)

DvM(ϕ) = lim
t→0+

M(ϕ+ tv)−M(ϕ)

t
=

∫
K1

vf1 +

∫
K2

lim
t→0+

(ϕ+ tv)∗ − ϕ∗

t
f2.

(17)
Since ϕ∗ is a convex function, ϕ∗ is differentiable almost everywhere. Fix
y ∈ K2 such that ∇ϕ∗(y) = x0 exists. Then by Lemma 2.2, x0 is the unique
maximizer of y · x− ϕ(x), the quantity whose maximum is ϕ∗(y). Similarly,
for t > 0 choose xt ∈ ∂(ϕ+ tv)∗(y) = argmaxx∈K1

(x · y − (ϕ+ tv)(x)). Then

(ϕ+ tv)∗(y)− ϕ∗(y) = xt · y − ϕ(xt)− tv(xt)− x0 · y − ϕ(x0). (18)

Replacing x0 with xt in (18) results in a larger quantity, while replacing xt

with x0 results in a smaller quantity. Rearranging gives

0 ≤ (ϕ+ tv)∗(y)− ϕ∗(y)

t
+ v(x0) ≤ v(x0)− v(xt). (19)

Since tv(xt) converges uniformly to 0, any convergent subsequence of the
family (xt) will converge to a maximizer of x · y − ϕ(x). Since x0 is the
unique such maximizer, it follows that xt → x0, hence v(x0) − v(xt) → 0.
Therefore

DvM(ϕ) =

∫
K1

vf1 −
∫

K2

(v ◦ ∇ϕ∗)f2. (20)

The Hadamard differentiability of M at ϕ is equivalent (since M is Lips-
chitz) to the existence of a measure M ′(ϕ) = σ ∈M(K1) = C(K1)

∗ such that
DvM(ϕ) =

∫
K1
v dσ for arbitrary v ∈ C(K1); when σ is absolutely continous

we identify M ′(ϕ) with the density function. We obtain this by the change
of variables y = ∇ϕ∗∗(x) in (20), first obtaining

DvM(ϕ) =

∫
K1

vf1 −
∫

(∇ϕ∗∗)−1(K2)

(
v ◦ ∇ϕ∗ ◦ ∇ϕ∗∗

)(
f2 ◦ ∇ϕ∗∗

)
det

(
D2ϕ∗∗

)
.

(21)
This change of variables is justified by work of McCann [10]. The Aleksandrov
derivative D2ϕ∗∗ is the absolutely continuous part of the distributionally-
defined Hessian of ϕ∗∗. The purpose of this change of variables is to employ
the cancellation property of gradients of convex-conjugate functions. Namely,

∇ϕ∗ ◦ ∇ϕ∗∗(x) = x (22)
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when the left side exists, a consequence of the uniqueness of the maximizers in
(10) and (11). Although the convex functions ϕ∗ and ϕ∗∗ are differentiable
almost everywhere, it may be that ∇ϕ∗∗ maps a set of positive measure
into the set where ∇ϕ∗ fails to exist. On the other hand, the Aleksandrov
derivative will be singular on such a set (see [10]), and so the cancellation
property (22) holds on the support of the second integrand in (20).

The two integrals in (20) can be combined, as
(
∇ϕ∗∗

)−1
(K2) = K1. In-

deed, at any x ∈ K1 such that ∇ϕ∗∗(x) = y0 exists, y0 is the unique max-
imizer of x · y − ϕ∗(y). In particular, y0 ∈ K2. Combining this with the
cancellation property (22), we obtain

DvM(ϕ) =

∫
K1

(
f1 −

(
f2 ◦ ∇ϕ∗∗

)
det

(
D2ϕ∗∗

))
v. (23)

This establishes the existence of the Hadamard derivative (13).

4 Examples

In this section, we present two examples in which we use the result of Theo-
rem 3.1 to compute optimal mappings for warping images. The first demon-
strates the effectiveness of the algorithm using a standard pair of images from
the image processing literature. The second is a simple example from medi-
cal imaging of how geometric properties of the optimal mapping between two
images contain information about the relationship between the two images.

In the context of image warping, f1 and f2 are discretely approximated
by the intensity values of the pixels in two greyscale images. In practice, we
find it works as well to replace the iteration (15) with

ϕn+1 = ϕn − αn

(
f1 −

(
f2 ◦ ϕn

)
det

(
D2ϕn

))
, (24)

which amounts to approximating ϕ∗∗n with ϕn.
With natural images, we find the iteration (24) can produce good-quality

warpings. An example with two 256× 256-pixel images is shown in Figure 1.
A Lax-type numerical scheme was used. Values of ϕ were computed at pixel
vertices. Derivatives of ϕ were computed at pixel centers using centered-
differencing. The second term of (24) was computed at the pixel centers,
then ϕn+1 was updated from ϕn at each vertex by averaging over surrounding

7



centers. The resulting warp of the Lena image is shown in Figure 1(c), where
190 iterations with stepsize parameter 1 were used, starting with the potential
of the identity mapping as the initial function ϕ0. Numerical artifacts are just
beginning to appear where the residue of the mirror of the Lena image meets
Tiffany’s eyelashes. These artifacts worsen upon further iteration, precluding
iterating further to remove the mirror residue and dark remnants of Lena’s
hair.

To improve the quality of the warp, we employ a multiresolution ap-
proach. We begin with smoothed versions of the two images, obtained by
convolution with a Gaussian kernel. We run the algorithm to obtain a warp-
ing potential. We then repeat the algorithm with the images having been
smoothed to a lesser degree, using the final potential from the previous step
as the initial function. We repeat this procedure, then at some point use
the warping potential obtained as the initial function for the unsmoothed
images. Figure 1(d) shows the result of using just one step of this iterated
smoothing procedure, using a Gaussian kernel of size 16 and width 4. The
resulting warp of the Lena image is almost identical to the Tiffany image.
Compare with the corresponding images in [6].

An example is presented in Figure 2 of a way that geometric information
contained in the optimal Monge-Kantorovich mapping can be used to infer
something about the relationship between two images. In Figures 2(a) and
2(b) are images of the same brain slice, before and after a tumor has devel-
oped. In Figure 2(c) is a plot of the vector field s(x) − x, where s is the
Monge-Kantorovich mapping. One can see that most of the deformation of
the domain is in the tumor region. This region can be identified using the
divergence of s, displayed in Figure 2(d). The dark color corresponds to a
negative divergence, as the mapping s compresses the domain to create the
dark tumor region. The nearby light areas show where surrounding tissues
have been compressed by the growth of the tumor.
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(a) (b)

(c) (d)

Figure 1: (a) Lena image. (b) Tiffany image. (c) Lena to Tiffany warp,
without smoothing. (d) Lena to Tiffany warp, using smoothed images first
to compute the initial function.
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(a) (b)

(c) (d)

Figure 2: (a) Healthy brain. (b) Same brain with tumor. (c) Vector-field
plot of mapping s(x)− x. (d) Divergence of optimal mapping.
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